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Abstract

Simple scaling laws are useful tools in understanding the effect of changing parameters in MRI experiments. In this paper the general
scaling behavior of the transverse relaxation times is discussed. We consider the dephasing of spins diffusing around a field inhomoge-
neity inside a voxel. The strong collision approximation is used to describe the diffusion process. The obtained scaling laws are valid over
the whole dynamic range from motional narrowing to static dephasing. The dependence of the relaxation times on the external magnetic
field, diffusion coefficients of the surrounding medium, and the characteristic scale of the field inhomogeneity is analyzed. For illustration
the generally valid scaling laws are applied to the special case of a capillary, usually used as a model of the myocardial BOLD effect.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The transverse relaxation times T2 and T �2 are funda-
mental quantities in MRI, especially for characterizing tis-
sues and their properties. The influence of static magnetic
field inhomogeneities on relaxation times is of special inter-
est in understanding relaxation processes inside the voxel.
It is well known that susceptibility contrasts, external mag-
netic fields and diffusion influences the relaxation times T2

and T �2. Obviously it is useful to understand the scaling of
relaxation times with respect to their parameters in order to
describe effects of parameter changing in a simple way. For
example scaling laws can be used to predict the effects of
changing external magnetic field strength or concentration
of contrast agents. It is important to know how relaxation
times vary subjected to changes in these characteristic
quantities. Despite this fact papers dealing with this issue
are sparse in the literature. Weisskoff et al. [1] discussed
the scaling behavior of the relaxation rate R2 in the context
of microscopic susceptibility variations. Starting from the
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Bloch-Torrey-Equation [2] they obtained two special scal-
ing laws and verified them by extensive numerical simula-
tion. Employing the strong collision approximation [3–5]
we give a rigorous derivation of a generalized scaling law
for both transverse relaxation times T2 and T �2. After con-
sidering the basic model of a field inhomogeneity inside a
voxel we use well known results of Bauer et al. [3] in order
to obtain the scaling laws. To give an example these results
are applied to a cylindrical geometry which is commonly
used as a model of a vascular network.
2. Basic model

We consider an arbitrary distribution of magnetic mate-
rial G inside a voxel causing a susceptibility shift Dv =
vi � ve compared to the surrounding medium with volume
V (see Fig. 1). The volume fraction g of material inside the
voxel is given by g = G/(G + V). Dephasing takes place in
the remaining volume V of the voxel around the magnetic
perturber G, in which the diffusion of the spins is deter-
mined by the diffusion coefficient D.

The z-component of the magnetic field caused by the
inhomogeneity G is given by [6,7]
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Fig. 1. Voxel containing a magnetic inhomogeneity G with susceptibility
vi and dephasing volume V with susceptibility ve. All coordinates inside G

are represented by primed vectors r 0 and all coordinates of V by unprimed
vectors r.
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BzðrÞ ¼ B0Dv
o

2

oz2

Z
G

d3r0

jr� r0j ; ð1Þ

where r 0 represents the coordinates inside the volume of the
perturber G and r the coordinates of the surrounding vol-
ume V (see Fig. 1). This means that only the field from
the magnetic inhomogeneity G inside the voxel influences
the dephasing of spins in V and the effects of neighboring
voxels are neglected. The external magnetic field B0 induces
the local resonance frequency x(r) = cBz(r) which can be
written as

xðrÞ ¼ dxf ðrÞ; ð2Þ

where the characteristic frequency is given by

dx ¼ cDvB0; ð3Þ

which contains the susceptibility properties of the perturber
and the external magnetic field, while the geometric
function

f ðrÞ ¼ o
2

oz2

Z
G

d3r0
jr� r0j ð4Þ

defines the shape of the perturber. Thus we are able to
separate the susceptibility properties of the inhomogeneity
G from its distribution inside the voxel. This offers the
possibility to investigate the influence of each part
independently.

In order to derive the scaling laws some independent
approximations are necessary. First we obtain the correla-
tion time s by using a mean time approximation that con-
siders a monoexponential time behavior of the correlation
function. The second one is the strong collision approxima-
tion which is used to simplify the diffusion process around
field inhomogeneities. The last approximation is again a
mean time approximation which considers the magnetiza-
tion decay as monoexponential also. As shown in previous
work [8] a relation between the correlation function and the
magnetization decay exists in the gaussian approximation.
As it is not known if the considerations of it are fullfiled
generally [9] we use the strong collision approach to de-
scribe the magnetization decay.

We start with calculating the correlation time s which is
required to obtain the magnetization decay. To investigate
the dynamic property of the problem we use the two-point
correlation function of the stochastic field fluctuations to
which a spin is subjected. It is defined as

KðtÞ ¼
Z

V
d3r

Z
V

d3r0 xðrÞpðr; r0; tÞpðr0Þxðr0Þ; ð5Þ

where p(r, r0, t) is the probability density of finding a spin
at point r after time t with the initial (t = 0) position r0, and
p(r0) specifies the probability density function of the equi-
librium distribution. In our case the latter is identical with
the spin density, which we assume to be homogeneous, i.e.
p(r0) = 1/V. Assuming free diffusion of spins within V, the
probability p(r, r0, t) is simply the Green’s function of the
diffusion equation where D is the diffusion coefficient

o

ot
pðr; r0; tÞ ¼ Dr2pðr; r0; tÞ ð6Þ

or

pðr; r0; tÞ ¼ etDr2

dðr� r0Þ; ð7Þ

with the reflectory boundary conditions orp(r, r0, t) = 0 at
the surface of the magnetic perturber and the voxel bound-
aries. In the case of permeable membranes the probability
function p(r, r0, t) has to fulfill the radiation boundary con-
ditions orp(r, r0, t) = kp(r, r0, t) at the surfaces of the inho-
mogeneities where k is the permeability of the membrane.
Insertion of the probability density Eq. (7) and p(r0) into
the definition of the correlation function Eq. (5), results in

KðtÞ ¼ 1

V

Z
V

d3rxðrÞetDr2

xðrÞ: ð8Þ

Using Eq. (2) the correlation function at t = 0 is given by

Kð0Þ ¼ 1

V

Z
V

d3rx2ðrÞ ¼: hx2ðrÞi ¼ dx2hf 2ðrÞi: ð9Þ

The result K(0) � dx2 is the same as from Jensen and
Chandra [10], Eq. (18) and in complete agreement with
the more general Eq. (1) given by Sukstanskii and Yablon-
skiy [11]. In general the correlation function K(t) does not
exhibit a single exponential decay as is often assumed [12].
This hampers a simple determination of the correlation
time, i.e. K(t) � e�t/s. However, a proper definition of the
correlation time is to define it as the mean relaxation time
of the correlation function, i.e. according to ref. [13],

s ¼
Z 1

0

dt
KðtÞ
Kð0Þ : ð10Þ

In fact, it has been demonstrated that this definition pro-
vides the best single exponential approximation of the cor-
relation function. A commonly used approximation for the
correlation function is
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KðtÞ � Kð0Þ � e�t
s: ð11Þ

As shown by Jensen and Chandra [10], as well as by Suk-
stanskii and Yablonskiy [11], if diffusion is unrestricted,
the long time limit of K(t) is exactly described by an alge-
braic function with K(t) � t�3/2. However, as we do not
use any specific relation between the correlation function
and the signal decay, the exact time course of the correla-
tion function is not of particular interrest. In the strong col-
lision approximation which is based on directly solving the
Bloch-Torrey-Equation a well defined correlation time is
necessary only which is given by the mean time approxima-
tion [13]. Insertion of Eqs. (8) and (9) into Eq. (10) yields

s ¼ 1

D
1

hf 2ðrÞiV

Z
V

d3rf ðrÞ � 1

r2

� �
f ðrÞ; ð12Þ

where the expression (1/$2)f(r) = g(r) is the solution g(r) of
the inhomogeneous Laplace-Equation $2g(r) = f(r) with
the appropriate boundary conditions. Obviously this corre-
lation time depends on the geometry function f(r) of the
perturber G and the diffusion coefficient D only. Perform-
ing the integration, the correlation time s will depend on
a characteristic size R, the diffusion coefficient D and the
volume fraction g. Thus the signal properties of a certain
voxel are completely described by the geometry function
f(r), the diffusion coefficient D and the characteristic fre-
quency dx. Using the correlation time for a given geometry
function f(r) of the inhomogeneity G the problem can be re-
duced to the examination of the dependence T �2 ¼ T �2ðs; dxÞ
as will be shown in the course of this paper.

At the end of this section it is useful to make some com-
ments on the limitations of this model. The local magnetic
field given in Eq. (1) is the first order perturbation accord-
ing to the external homogeneous field B0. Influences on the
magnetization of the perturber by its own induced magnet-
ic field are neglected. It is also assumed that the perturber
consists of one material only. For this reason Dv does not
vary in space inside the volume G. To include systems of
more than one material the perturber is considered to be
composed of more than one particle and each of them is as-
sumed to consist of just one material. Since we apply first
order perturbation only the magnetic field in Eq. (1) is giv-
en by a sum of integrals, each for one single particle. This is
possible as long as higher order perturbation can be
neglected.

To include the effects of neighboring voxels the above
method can be used. Therefore the voxel is extended to
include the perturbers of these voxels but the dephasing
volume remains fixed in its initial boundaries. Since
calculations become extremely difficult in this case we will
investigate the limits assuming a single voxel without
neighbors. The single voxel approximation is valid as long
as the characteristic frequency dx generated by the sur-
rounding voxels is negligible compared to the characteristic
frequency on the surface of the perturber inside. For illus-
tration we assume single sphere encircled by 12 nearest
neighbors with distance 2

ffiffiffiffiffiffiffiffi
2=3

p
s according to a fcc Bravais
lattice. Thus we find by solving Eq. (1) for a sphere and
adding up all contributions that the characteristic frequen-
cy of the perturber inside the voxel has to fulfill
dx� 12dxR3

s=ð2
ffiffiffiffiffiffiffiffi
2=3

p
sÞ3 which corresponds to a volume

fraction of g� 0.5. A similar investigation of a single cap-
illary surrounded by six parallel capillaries with distance 2a
gives the relation dx� 6dxR2

c=ð2aÞ2, and thus g� 0.8. In
MRI experiments with contrast agents the volume fraction
of iron particles inside a macrophage used as carrier is in
the order of g � 10�3. Similar or lower concentrations
are used in other experiments. Thus the single voxel
approximation is satisfied.
3. General results

In order to find the relationship between the relaxation
time T �2, the correlation time s, as well as the characteristic
frequency dx, the time development of the magnetization
signal is studied. In the equilibrium state the magnetization
is parallel to the external magnetic field, resulting in a
longitudinal component only. Application of a HF-pulse
induces a magnetization component m(r, t) in a plane trans-
versal to the external magnetic field. The time evolution of
m(r, t) is governed by the Bloch-Torrey-Equation [2]:

o

ot
mðr; tÞ ¼ ½Dr2 þ ixðrÞ	mðr; tÞ: ð13Þ

Formal time integration of the Bloch-Torrey-Equation re-
sults in

mðr; tÞ ¼ mðr; 0Þ expf½Dr2 þ ixðrÞ	tg: ð14Þ

The resulting signal from the whole voxel is given by

MðtÞ ¼ 1

V

Z
V

d3rmðr; 0Þ expf½Dr2 þ ixðrÞ	tg; ð15Þ

where we assume a small volume fraction of the perturber
inside the voxel [14]. Hence, in the regime of static dephas-
ing (D = 0) the magnetization decay is described by [14]

M0ðtÞ ¼
1

V

Z
V

d3rmðr; 0Þ expfixðrÞtg: ð16Þ

There are a few geometrically determined functions x(r)
for which the Bloch-Torrey-Equation can be solved analyt-
ically, e.g., when x(r) is the local precession frequency in a
linear gradient field. For more sophisticated functions x(r),
such as the field around cylinders and spheres, only numer-
ical calculations or computer simulations may be applied to
determine the time course of the transverse magnetization.
Assuming that on the time scale of the local field fluctua-
tions the magnetization M(t) does not vary significantly,
we may consider the local field fluctuations as stochastical-
ly independent on the time scale of the magnetization de-
cay. This applies if the correlation time s is much smaller
than the susceptibility-induced contribution of the trans-
verse relaxation time T �2. A mathematical criterion of this
consideration will be given after deriving an expression of
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the relaxation time T �2. The stochastic independence sug-
gests replacing the diffusion operator D$2 in Eq. (15) by
a strong collision operator [3].

The strong collision approximation consists of replacing
the diffusion operator D$2 by the generator D̂:

Dr2!strong

collision
D̂ ¼ mðP̂� 1̂Þ; ð17Þ

where P̂ denotes the projection operator onto the function-
al space generated by the equilibrium probability function
p(r), i.e.,

P̂gðrÞ ¼ pðrÞ
Z

V
d3rgðrÞ; 1̂gðrÞ ¼ gðrÞ: ð18Þ

The operator D̂ describes the stochastic field fluctuations as
a stationary Markov process with a transition rate of mp(r)
between two distinct field realizations x(r0) fi x(r), i.e., the
transition rate is independent of the initial state. This
means that due to the interaction with the fast field fluctu-
ations the trajectory of the spin covers nearly the whole
offresonance frequency distribution on a shorter time scale
as the relaxation occurs. An approach of this type is
referred to as a random phase or strong collision approxi-
mation [15]. Since the proton density in tissue is rather
homogeneous, the probability density function of the equi-
librium state is simply p(r) = 1/V. It is important to note
that the projection operator P̂� 1̂ is idempotent, i.e.,
ðP̂� 1̂Þn ¼ P̂� 1̂ for n P 1.

If we substitute the operator D̂ for the diffusion operator
D$2 in the Green’s function of the diffusion equation, and
use the idempodency of this operator, we find for the
strong collision Green’s function after several rearrange-
ment steps

pSCðr; r0; tÞ ¼ pðrÞ � ð1� e�mtÞ þ e�mt � dðr� r0Þ: ð19Þ

Introducing this Green’s function into the expression for
the correlation function, we arrive at the following
equation:

KSCðtÞ ¼
Z

V
d3r

Z
V

d3r0xðrÞpSCðr; r0; tÞpðr0Þxðr0Þ

¼ KSCð0Þ � e�mt: ð20Þ

The parameter m characterizes the decay rate of the mag-
netization and is determined self consistently in the follow-
ing way [3]: the correlation time of the original stochastic
process is identical to the correlation time of the strong col-
lision approximation of this process. If we compare Eq.
(20) with the correlation function K(t) = K(0)exp(�t/s),
we find for the parameter m the relation m = 1/s. Replacing
the diffusion operator in the expression for the signal from
the whole sample Eq. (15) leads to

MðtÞ ¼ 1

V

Z
V

d3re½D̂þixðrÞ	tmðr; 0Þ: ð21Þ

For further treatment it is convenient to introduce the La-
place transform of the magnetization decay
M̂ðsÞ ¼
Z 1

0

dte�stMðtÞ: ð22Þ

The relation between the Laplace transform M̂0ðsÞ of the
static dephasing regime and the whole dynamic range is
given by [3,5]

M̂ðsÞ ¼ 1

V

Z
V

d3r
1

s� s�1ðP̂� 1̂Þ � ixðrÞ

¼ M̂0ðsþ s�1Þ þ s�1 � M̂0ðsþ s�1Þ � M̂ðsÞ

¼ M̂0ðsþ s�1Þ
1� s�1 � M̂0ðsþ s�1Þ

:

ð23Þ

In principle, the exact time course of the magnetization
can be obtained by a Laplace backward transformation
of Eq. (23). However in most cases this is not possible
analytically. As shown in [9] a monoexponential signal de-
cay is justified in the long time limit. For short echo times
however a Gaussian shaped signal decay of the form
�exp[�t2dx2Æf(r)2æ/2] occurs [8,9]. As in clinical applica-
tions short echo times are hard to realize and the transverse
relaxation time is usually used to characterize tissue we fo-
cus on exponential decay. Beside this the non-Gaussian
character of spin dephasing is well described by the strong
collision approximation as shown in [9]. The strong colli-
sion approximation itself leads to a signal decay which in-
cludes the long and short time limit (see Eq. (38) in [9]). In
many applications one is interested in the relaxation time
T �2 which approximates the situation best as a single expo-
nential decay. This is given by the mean relaxation time T �2
which is defined as [13]

T �2 ¼
Z 1

0

dt MðtÞ ¼ M̂ð0Þ: ð24Þ

Inserting Eq. (16) into Eq. (23) and applying Eq. (24), the
dependence of T �2 on s as well as on dx is found to be

1

T �2ðs; dxÞ ¼
1

1
V

R
V d3r 1

s�1�idxf ðrÞ
� 1

s
: ð25Þ

To obtain the scaling behavior we replace s fi ks and
dx fi ldx and find

1

T �2ðks; ldxÞ ¼
1

1
V

R
V d3r 1

ðksÞ�1�ildxf ðrÞ

� 1

ks

¼ 1
k
l

1
V

R
V d3r 1

ðlsÞ�1�ikdxf ðrÞ

� l
kls

: ð26Þ

This directly implies the scaling law

T �2ðks; ldxÞ ¼ k
l

T �2ðls; kdxÞ; ð27Þ

where the scaling parameters k and l are arbitrary real
numbers. Since we did not specify the geometry function
this relation is valid for objects of the same shape but arbi-
trary parameters like size, susceptibility, external magnetic
fields or diffusion coefficients of the surrounding medium.
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These parameters determine the two scaled variables s and
dx for a given shape. With Eq. (25) at hand we are able to
give a mathematical criterion on the validity range of the
strong collision approximation. As it is valid in the case
that s < T �2. Using Eq. (8) in [16] and with the help of
Eq. (25) we obtain the criterion

Re
1

V

Z
V

d3r
1

1þ isdxf ðrÞ

� ��1
" #

< 2: ð28Þ

In the motional narrowing regime (where the relaxation
time is given by T �2 � 1/sdx2) the condition of validity of
the strong collision approximation s < T �2 leads to the con-
dition s2dx2 < 1. In the opposite limit the static dephasing
regime (where the relaxation time is given by T �2 � 1/dx)
the same condition results in sdx < 1. Thus it is possible
to expand Eq. (28) up to the quadratic term in sdx and
we eventually arrive at

ðDf ðrÞÞ2 ¼ hf ðrÞ2i � hf ðrÞi2 < 1

2s2dx2
; ð29Þ

where the expectation value of a function is defined in Eq.
(9). The derived relation (29) can be used as a mathematical
criterion to describe the validity of the strong collision
approximation for a given shape of the magnetic perturber.
Assuming an exponential decay of the spin echo signal we
are able to use Eq. (24) in [4]. To obtain similar scaling laws
for the spin echo relaxation time T2 we use the relation

T 2 ¼ T �2 þ s; ð30Þ
valid in the strong collision approximation, [4,5] which in-
cludes static dephasing as well as motional narrowing as
limiting cases. In analogy to Eq. (27) we obtain the scaling
law for the spin echo relaxation time T2

T 2ðks; ldxÞ ¼ k
l

T 2ðls; kdxÞ: ð31Þ

It is important to note that Eqs. (25) and (30) are derived in
the strong collision approximation. Thus, also the scaling
laws are rigorous in this approximation only. Following
the ideas of Weisskoff et al. [1] it is possible to derive from
the Bloch-Torrey- Eq. (13) the relation

T 2ðR;D; dxÞ ¼ T 2ðkR; k2D; dxÞ: ð32Þ
This scaling law depends on a characteristic size R, the dif-
fusion coefficient D and the characteristic frequency dx
which implies with Eq. (31) that the correlation time is a
function of R and D. In the scaling law of Weisskoff dx
is kept constant while R and D are varied. This equals set-
ting k = 1 = l in our scaling law Eq. (31) and implies that
also s must stay unaffected. Thus, we conclude that s is a
function of the ratio of R2 and D

s ¼ sðR2=DÞ: ð33Þ
To specify this dependence it is possible to apply the coor-
dinate transform r = Ru (which corresponds to a dilation)
to the Eq. (12) while keeping the volume fraction g unaf-
fected. Taking into account that the form of the geometry
function is independent of the variable when using this
transform, i. e. f(r) = f(u) we find for the correlation time
s = k(g)R2/D. An analogous relation was postulated by
Stables et al. (Eq. (15) in [17]). For a given geometry the
dependence of k on g is given by

kðgÞ ¼ 1

hf 2ðuÞiV

Z
V

d3uf ðuÞ � 1

r2

� �
f ðuÞ; ð34Þ

where all quantities and operators are according to the new
variable u. The implicit dependence on g is given by the re-
gions of integration G and V in Eqs. (4) and (12).

4. Application to a capillary

In this section we will apply our results to a capillary
modeled by a cylindrical magnetic inhomogeneity crossing
the voxel. A single capillary is often used to describe signal
formation in myocardium [3]. In cardiac diagnosis the
transverse relaxation times can be used to distinguish be-
tween unaffected and affected myocardium. Recently in
our group we exploited the dependence of the transverse
relaxation times on parameters of the capillary system to
characterize capillary recruitment in the myocardium of pa-
tients with stable angina due to single-vessel coronary artery
disease [18]. Therefore measurements were performed using
a combination of contrast agent and vasodilatator. The
concept of this method is explained in Fig. 6 of [18]. Both,
the concentration of the contrast agent and the concentra-
tion of the vasodilatator influence the transverse relaxation
times, where the contrast agent affects the parameter dx and
the vasodilatator affects the radius RC of the capillary. In
the case of a high concentration of vasodilatator and con-
trast agent the underlying diffusion regime is the static
dephasing regime while in the opposite case the motional
narrowing regime is present. While the static dephasing re-
gime has been studied extensively [19], the derived scaling
laws are used to obtain more general results which will be
applied in the prediction of experiments using combinations
of contrast agents and vasodilatators. For this purpose a
capillary with a tilt angle h in an external magnetic field
B0 is considered. The susceptibility inside the capillary is
given by vi corresponding to the concentration of the con-
trast agent while ve is the susceptibility of the surrounding
medium (Fig. 2). The radius of the capillary RC can be
directly influenced by the concentration of the vasodilator.
The inhomogeneous magnetic field induced by the suscepti-
bility differences inside the voxel [20] follows from Eq. (1):

BðrÞ ¼ vi � ve

2
B0 sin2 hR2

C

cos 2/
r2

; ð35Þ

where the according parameters are defined in Fig. 2. As al-
ready stated the local resonance frequency x(r) can be writ-
ten in the form of Eq. (2), with the susceptibility term

dx ¼ c
vi � ve

2
B0 sin2 h ð36Þ

and the geometry function



Fig. 2. (Left) Capillary in an external magnetic field. (Right) Cross
sectional view of a voxel in polar coordinates.
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f ðrÞ ¼ R2
C

cos 2/
r2

: ð37Þ

In agreement with Eq. (33) the correlation time of the spins
diffusing around the capillary is given by [3]

s ¼ R2
C

4D
ln g

g� 1
; ð38Þ

where g is the volume fraction of the capillary inside the
voxel. The relationship between the relaxation times and
geometrical properties of the capillary had been investigat-
ed in previous publications [3,4,21,22] and results in

1

sR2

¼ 1þ 1þ gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðgsdxÞ2

q
� 1

� �
þ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðsdxÞ2

q
� 1

� � :
ð39Þ
D C

B

A

Fig. 3. Illustration of the scaling law kR2ð
ffiffiffi
k
p

RC ; dxÞ ¼ R2ðRC ; kdxÞ for
the parameter k = 4. The solid and the dashed curve are obtained from Eq.
(39) for D = 1 lm2 ms�1 and g = 0.05. A doubling of the capillary radius
(from point A to B) and following multiplication of the according
relaxation rate with the scaling parameter k = 4 (from point B to C) leads
to the same value for the relaxation rate as a multiplication of the
characteristic frequency dx with the scaling parameter k = 4 by keeping
the primary radius unaffected (from point A to D).
With Eqs. (38) and (39) it is possible to relate the suscepti-
bility shift Dv, the radius of the capillary RC and the relax-
ation times T2 and T �2 with each other. To illustrate the
scaling laws, the influence of an increase of the capillary
radius RC on the relaxation rate R2 = 1/T2 for various sus-
ceptibility shifts will be studied. With the general relation-
ship Eq. (31) and the expression for the correlation time
Eq. (38), the scaling law of the transverse relaxation rate
yields kR2ð

ffiffiffi
k
p

RC; dxÞ ¼ R2ðRC; kdxÞ in the case of l = 1.
This special case of the general scaling behavior coincides
with the result of Weisskoff et al. (Eq. (9) in [1]). An appli-
cation of this scaling law is visualized in Fig. 3.

5. Discussion

Starting from simple assumptions about the distribution
of magnetic material inside a voxel, it is possible to derive
simple scaling laws for the gradient echo relaxation time T �2
as well as the spin echo relaxation time T2 in the strong col-
lision approximation. Thus it was possible to generalize
previously obtained results. With these parameters one is
able to predict effects of scaling the susceptibility shift,
the external magnetic field, size of the perturber, or diffu-
sion properties of the surrounding medium on the relaxa-
tion times. As already stated we see that the scaling
behavior of the relaxation times as given in Eqs. (27) and
(31) is valid for an arbitrary shape of the perturber. In con-
tradiction to previously obtained results, it is possible to
apply these scaling laws to arbitrary geometries, i.e. inde-
pendently of the shape of the perturber it is possible to pre-
dict the scaling behavior of the transverse relaxation times.
This enables us to connect different parameters of the prob-
lem in a quite simple way without considering the whole
complexity of the system. In the special case of spheres this
can be easily derived by directly inserting the scaling
parameters in Eq. (8) in Ref. [16].
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